Living with compromise: Enterprise Network Survival in tough Russian Environment

Vladimir Kropotov, Vitaly Chetvertakov, Fyodor Yarochkin HITCON 2014

Affilations: Academia Sinica, o0o.nu, chroot.org

Aug 20, 2014, Taipei

Outline

Agenda

Prerequizites and Experience

Know your history

Incidents: detection, prevention

Tools and Execution

Incident Response

Questions

Agenda

- Prerequisites and past Experience share practical experience in an enterprise defense that lead to particular conclusions
- ► Tools and implemention

demonstrate tools and techniques that improve detection aid incident handling lifecycle

You are or will be compromised

If you are under attack, your AV, Firewaslls, IDS, etc. are in THE ATTACKER THREATS MODEL. The option you have - read between the lines. When you are compromised, what is the action plan? Are you able to:

Detect

Properly:

- Categorise
- Mitgate
- Investigate
- . . .

Threat Landscape

Assumption - Not isolated big networks are (almost) always somehow compromised During the last year about 30% of monitored hosts was attacked by cybercrimes at least once. For Basic setup Host AV, Proxy with AV, firewalls, IPS, etc... Success rate 3-15% If you have 10k hosts network in Russia, about 3k host will be attacked and 90-450 will be compromised on average. Approximate this situation to 40M hosts...

What to do?

Agenda Propositive and Experience Know your history Incidents: detection, prevention Tools and Execution Incident Response

Threat Identification

- Identify threats within detection capabilities of your organisation.
- ► There always will be threats your org can't detect or handle. You have to accept the risk (or allocate additional resources to mitigate it).

You have Good monitoring team - otherwise you can ONLY rely on your security vendors opinion and support in handling security incidents. BAD!

Examples of an Org. Strength:

- Defense in Depth: Have multipe independent layers of protection monitoring or mitigation.
- Examples: sinkholes redirect botnet traffic to internal sinkholes. proxy blacklist prevents access to botnet resources, and so on. This also decreases risks of your organization to be blacklisted in public blacklists, such as spamhaus, shadowserver lists (SPB, RSBL).

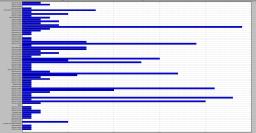
Examplies of possible org Limitations:

- No security team, IT operations outsourced :)
- HUGE distributed Not centralized environment. No uniform defense mechanisms.
- Limited ability to control and monitor IT and SECURITY events
- No recording of forensic evidence
- Distributed, uncommunicating IT support teams

Agenda Prescriptives and Experience. Know your history. Incidents: detection, prevention. Tools and Execution. Incident Response

Identify your Attack Surface

browser? mail? vpn? rewmovable devices?publically accessable asset? Untrusted vendor?



Attacker information gathering

- ► Targetted Attackers want your data.
- ▶ They have time.
- Not every javascript serves exploit. Some are just recording information on your environment.

Attacker exploitation

vuls vs kis (based on Mila/contagiodump repo data):

Know your history

Incident history datamining.

Case studies of Incident and Incident Response

An Incident Lifestype

stages in life of an incident

- ▶ Incident (Almost) Happens
- Incident Detected
- Additional Information Collected
- Short-Term Impact Minimization
- Incident Categorized
- Long-Term Mitigation plan (typical/ not typical)
- Mitigation plan implementation
- QOS (Mitigation assurance): CHECK!
- Indicators of Compromise (IOCs) preservation

- Check for presence of IOCs in other parts of monitoring Environments
- Store incident data, update knowledge base, collect useful stats to speed up future incident handling.

Be sure that measures are effective.

MOUFLAGE

You're doing it wrong!

- Characteristics of incidents
- How to enhance security measures
- How to prevent further recurrence

Classification of Incidents

Examples:

- Malicious code
- Malicious code, with consequential network activity
- Anomalous activity
- Out of the scope of Enterprise Network Activity

- Untrusted executable
- Direct reputation risk
- Indirect reputation risk
- ▶ Targeted Attack (APT)

Incidents vs Systems(1)

Incidents VS Systems: Usability of various components common belief

incidents/systems	firewalls	AV	web traf	IPS	DNS Profiling
Malicious code		10			
Malicious code, with	1	7		2	
Anomalous activity	5			5	
Out of the scope	5			5	
Untrusted executable		7		3	
Direct reputation risk					
Indirect reputation risk					
Targeted Attack (APT)		8		2	

Incidents vs Systems(2)

Incidents VS Systems: Usability of various components reality

incidents/systems	firewalls	AV	web traf	IPS	DNS Profiling
Malicious code		4	6		
Malicious code, with	1	2	4	1	2
Anomalous activity	2		3	2	4
Out of the scope	2		5	3	
Untrusted executables		1	8	1	
Direct reputation risk			10		
Direct reputation risk			10		
Indirect reputation risk			10		
Targeted Attack (APT)		8		2	

Proxy and passive HTTP traffic analysis Sources:

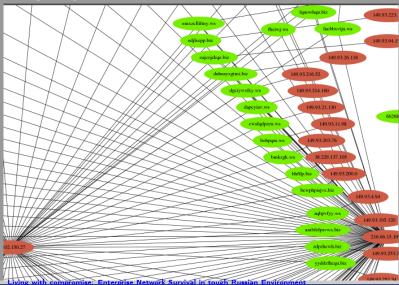
- proxy logs
- passive web traffic monitoring (including

Living with compromise: Enterprise Network Survival in tough Russian Environment

HTTPS)

url	ip	mime type	size	code
cuba.eanuncios.net/1/zf3z9lr6ac8di6r4kw2r0hu3ee8ad.html	93.189.46.222	text/html	118162	200
cuba.eanuncios.net/2909620968/1/1399422480.htm	93.189.46.222	text/html	37432	200
cuba.eanuncios.net/2909620968/1/1399422480.jar	93.189.46.222	application/java-archive	18451	200
cuba.eanuncios.net/2909620968/1/1399422480.jar	93.189.46.222	application/java-archive	18451	200
cuba.eanuncios.net/f/1/1399422480/2909620968/2	93.189.46.222	application/octet-stream	115020	200
cuba.eanuncios.net/f/1/1399422480/2909620968/2/2	93.189.46.222	-	327	200

What just happened?


Passive DNS traffic acquisition and analysis a couple of examples (last week)

domain	ip	owner
rtvwerjyuver.com	69.164.203.105	linode
tvrstrynyvwstrtve.com	109.74.196.143	linode
cu3007133.wfaxyqykxh.ru		

what does your DNS traffic look like..?

DNS viz01

DNS viz02

DNS anonymizer traffc

Anonimizer

```
8/13/2014 9:59:12 PM - ##.##.## - o53xo.pfxxk5dvmjss4y3pnu.dd34.ru
8/13/2014 9:59:12 PM - ##.##.## - 0s.om.pf2gs3lhfzrw63i.dd34.ru
8/13/2014 9:59:12 PM - ##.##.## - 0s.om.pf2gs3lhfzrw63i.dd34.ru
8/13/2014 9:59:12 PM - ##.##.## - nbxxe33tnbuxsllwnn2xg.mjuxultvme.dc
8/13/2014 9:59:12 PM - ##.##.## - nbxxe33tnbuxsllwnn2xg.mjuxultvme.dc
8/13/2014 9:59:12 PM - ##.##.## - 0s.ne.pf2gs3lhfzrw63i.dd34.ru
8/13/2014 9:59:12 PM - ##.##.## - 0s.ne.pf2gs3lhfzrw63i.dd34.ru
```

8/13/2014 9:59:15 PM - ##.##.##.## - obuwg4y.nruxmzlkn52xe3tbnqxgg33n.c 8/13/2014 9:59:15 PM - ##.##.##.## - obuwg4y.nruxmzlkn52xe3tbnqxgg33n.c 8/13/2014 9:59:15 PM - ##.##.## - 0s.o53xo.mzqwgzlcn5xwwltdn5wq.dd3 8/13/2014 9:59:15 PM - ##.##.##.## - 0s.o53xo.mzqwgzlcn5xwwltdn5wq.dd3

8/13/2014 9:59:12 PM - ##.##.##.## - 0s.o53xo.pfxxk5dvmjss4y3pnu.dd34.ru 8/13/2014 9:59:12 PM - ##.##.## - o53xo.pfxxk5dvmjss4y3pnu.dd34.ru

Time: Today 09:59:15pm

Covert channel communication

8/13/2014 5:49:04 PM - x.x.x.x - 5141017.mtdtzwdhc.mdgtmtmm6 8/13/2014 5:49:04 PM - x.x.x.x - 5141017.mtdtzwdhc.mdgtmtmm6

Time: Today 13:19:25
Description: REP. bilscz Detected at Today

13:19:25

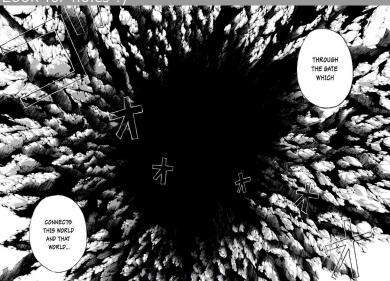
Interface Name: bond1.382
Interface Direction: outbound

Credit: domaintools.com

Email	$thomas@spenglers.biz\ is\ associated\ with\ {\sim}93{,}134\ domains$
Registrant Org	Domain Administrator was found in ~4,350,091 other domains
Dates	Created on 2014-06-30 - Expires on 2015-06-29
Domain Status	Registered And No Website
Whois History	1 record has been archived since 2014-07-02
Hosting History	1 change on 2 unique name servers over 0 year
Whois Server	whois.biz

Sinkhole in DNS

Credit: domaintools.com


Email	abuse@bigrock.com is associated with $\sim\!265{,}970$ domains gregorygofr@yahoo.com
Registrar	BIGROCK SOLUTIONS LIMITED
Registrar Status	clientTransferProhibited
Dates	Created on 2011-06-26 - Expires on 2015-06-26 - Updated on 2014-06-25
Name Server(s)	NS1.SUSPENDED-DOMIAN.COM (has 306 domains) NS2.SUSPENDED-DOMIAN.COM (has 306 domains)
IP Address	69.164.203.105 - 81 other sites hosted on this server
IP Location	Texas - Dallas - Linode
ASN	S36351 SOFTLAYER - SoftLayer Technologies Inc., US (registered Dec 12, 200
Domain Status	Registered And Active Website
Whois History	30 records have been archived since 2011-06-27 Whois History

DNS

```
Suspicious activity: DNS lookups: kojxlvfkpl.biz:149.93.207.203
kojxlvfkpl.biz:216.66.15.109
koixlvfkpl.biz:38.102.150.27
ound a referral to rwhois.he.net:4321.
rwhois V-1.5:0012b7:01 ops.he.net (HE-RWHOISd v:r255,m1:r319)
etwork: ID: I:NET-216.66.15.64/26
etwork:Auth-Area:nets
etwork:Class-Name:network
etwork:Network-Name;I:NET-216.6<u>6.15.64/26</u>
etwork:Parent;I:NET-216.66.0.0/18
etwork: IP-Network: 216.66.15.64/26
etwork:Org-Contact;I:POC-DC-1125
etwork:Tech-Contact:I:POC-HE-NOC
etwork:Abuse-Contact;I:POC-HE-ABUSE
etwork:NOC-Contact:I:POC-HE-NOC
etwork:Created:20130823163004000
etwork:Updated:20130823163004000
ontact:ID:I:P0C-DC-1125
ontact:Auth-Area:contacts
ontact:Class-Name:contact
```

Tools and Execution Incident Response

Look for holes :)

Hole traffic

.,' 2014/08/07 12:15:38	202 489 no. 21 7 TWN	2258	38.102.150.27 USA	80	7	180 / 590	moloch
2014/08/07 12:15:44	200 100 7 TWN	2502	38.102.150.27 USA	80	7	180 / 590	moloch
2014/08/07 12:16:03	202.300.103.21 7 TWN	3018	38.102.150.27 USA	80	7	180 / 590	moloch
2014/08/07 12:16:58	202 469 464.21 7 TWN	1227	38.102.150.27 USA	80	7	180 / 590	moloch
2014/08/07 12:16:58	202.100.104.01 7 TWN	1229	38.102.150.27 USA	80	6	156 / 512	moloch
2014/08/07 12:17:06	7 TWN	1481	38.102.150.27 USA	80	7	180 / 590	moloch
2014/08/07 12:17:29	7 TWN	2253	38.102.150.27 USA	80	7	180 / 590	moloch

Sandboxes could be helpful to analyze mal. content.

However, they are often not very practical. A few examples (delivery via SMTP)

- ▶ 1.zip
- FW supplier data form.msg
- How to Get Thin Quick.msg
- Losing a size within a fortnight It's easy.msg

Living with compromise: Enterprise Network Survival in tough Russian Environment

≥ 2014₁₃₀₈.msg

Problems with Sandboxing

- Known tricks
- matching environment
- code behaves differently depending on: environment, time, user interaction, time-zone, ..
- performance (timeouts, ..)
- Use interaction

Stages of incident detection

Before Incident (Security Awareness, Pentests, etc.)

- Access attempt
- Access obtained
- ▶ Privilege escalation
- Execution of attack goal
- Post-incident IR (too late))
 Incidents VS Stages of detection ~= how monitoring team operates with current limitations in Environment

Incidents VS Stages of detection(1)

common belief

incidents/stages	before	attempt	obtained	escl	impl	late
Malicious code	5	5				
Malicious code, with	5	5				
Anomalous activity	8	2				
Out of the scope						
Untrusted executables	1	9				
Direct reputation risk			10			
Indirect reputation risk			10			
Targeted Attack (APT)		8	2			

reality

incidents/stages	before	attempt	obtained	escl	impl	late
Malicious code	1	2	2		2	3
Malicious code, with	1	2	2		3	2
Anomalous activity	1	3	2		2	2
Out of the scope					2	8
Untrusted executables		2	3		3	2
Direct reputation risk			2	2	3	3
Indirect reputation risk Targeted Attack (APT)		1	2	2	3 2	3

Attack delivery method

incidents/delivery	web	email	ext.storage	share	services	other
Malicious code	5	2	2	1		
Malicious code, with	5	2	2	1		
Anomalous activity	1	3	2	1	1	2
Out of the scope	3	3	2			2
Untrusted executables	4		3		1	2
Direct reputation risk	3	2			3	2
Indirect reputation risk	3	2	1		2	2
Targeted Attack (APT)	2	3	1		2	2

How can you improve your security posture

Cross-correlate your historical data including data from following sources:

- Incidents
- ▶ Detection systems (ips/ids/av/fw/..): map type of incident to component that detects those.
- Stages of detection and incidents
- Delivery method which network detection components detect what delivery methods.

use community contributions :)

- Availability first
- Conflict of interest: flag
- Restrictions on information sharing: limits the quality of teams collaboration
- Manual routing of information sharing for the special cases

Incidents categorization

Categorisation based on Vendor knowledge

- Categorisation based on public sources
- Categorisation based on internal intel.
- Categorisation based on limited IOCs sharing to the focused groups
- Attribution

Tools and Execution

There is a number of tools we can share. Some are developed by us. Other - are just very good open source projects.

- http://github.com/fygrave/ndf
- http://github.com/fygrave/hntp
- ▶ fiddler
- elasticsearch && http://github.com/aol/moloch (vm)
- yara (as moloch plugin)
- hpfeeds
- ▶ CIF

Indicators of Compromise is one of essential information mediums here to represent facts on incident(s).

Mining public knowledge

There is a lot of public knowledge you could mine. CIF is a fantastic tool for that. https://github.com/collectiveintel/cif-v1

```
[2014-08-20T09:55:12,711Z][INF0][main:312]: processing: /opt/cif/bin/cif-smrt -d
 -r /etc/cif/rules/default/isc sans edu.cfg -f domains medium
[2014-08-20T09:55:12.713Z][INF0][CIF::Smrt:91]: starting at: 2014-08-20T00:00:00
[2014-08-20T09:55:12.717Z][INF0][CIF::Smrt:103]: processing...
[2014-08-20T09:55:12.717Z][DEBUG][CIF::Smrt::Handler::Default:52]: fetching...
[2014-08-20T09:55:12,717Z][DEBUG][CIF::Smrt::Fetcher::Uri:75]: pulling: http://i
sc.sans.edu/feeds/suspiciousdomains Medium.txt
[2014-08-20T09:55:15.058Z][DEBUG][CIF::Smrt::Fetcher:49]: using log: /var/smrt/c
ache/20140820.log
[2014-08-20T09:55:15,058Z][DEBUG][CIF::Smrt::Fetcher:51]: file: /var/smrt/cache/
isc.sans.edu-domains medium
[2014-08-20T09:55:15.108Z][INFO][main:324]: nothing [new] to send...
[2014-08-20T09:55:15,108Z][INF0][main:312]: processing: /opt/cif/bin/cif-smrt -d
-r /etc/cif/rules/default/spamhaus.cfg -f edrop
[<u>2014-08-20T09:55:15</u>,111Z][INF0][CIF::Smrt:91]: starting at: 2014-08-20T00:00:00
[2014-08-20T09:55:15.114Z][INFO][CIF::Smrt:103]: processing...
[2014-08-20T09:55:15.114Z][DEBUG][CIF::Smrt::Handler::Default:52]: fetching...
[2014-08-20T09:55:15.114Z][DEBUG][CIF::Smrt::Fetcher::Uri:75]: pulling: http://w
ww.spamhaus.org/drop/edrop.txt
```

CIF: example

```
grabbing shadowserver data:
feed = 'http://www.shadowserver.org/ccdns.php'
regex = '^([a-zA-Z0-9.-]+[a-zA-Z0-9]{2,5})$'
regex_values = 'address'
assessment = 'botnet'
description = 'unknown'
alternativeid = 'http://www.shadowserver.org/ccdns.php'
alternativeid_restriction = 'need-to-know'
disabled = true
```

CIF: example

```
Searched 5 of 5 shards, 45909 hits, 3.134 seconds
index
                                                   Result Source
                                                                                                            provider A subdivision
                                                                                                                                         group
                                                                                                                                                   firsttime
cif-2014.08.13
                                                                                                            spamhaus.org CA
                                                                                                                                         everyone 2014-08-13
rif-2014.08.13
                                                                                                            spamhaus.org CA
                                                                                                                                         everyone 2014-08-13
                     index: "cif-2014.08.13",
df-2014.08.13
                                                                                                                                         everyone 2014-08-13
                    type: "observables",
                                                                                                            spamhaus.org
df-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                    "edaa72396b4a761122e11c4dc9b6844dd9417c3032150243397e72d68154d8b0".
df-2014 08 13
                                                                                                            spamhaus.org BC
                                                                                                                                         everyone 2014-08-13
                    _version: 1,
cif-2014.08.13
                                                                                                            spamhaus.org MOW
                                                                                                                                         everyone 2014-08-13
                    score: null,
                    source: {
cif-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                       provider: "spamhaus.org",
cif-2014.08.13
                       peers: [],
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
df-2014.08.13
                       subdivision: "MOW",
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                       group: "everyone".
cif-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                       firsttime: "2014-08-13T08:13:33Z",
                                                                                                            spamhaus.org MOW
                                                                                                                                         everyone 2014-08-13
                       latitude: 55.7522,
rif-2014 08 13
                                                                                                            spamhaus.org MOW
                                                                                                                                         everyone 2014-08-13
                       "edaa72396b4a761122e11c4dc9b6844dd9417c3032150243397e72d68154d8b0",
cif-2014.08.13
                                                                                                                                         everyone 2014-08-13
                                                                                                            spamhaus.org
                       altid tip: "green".
                       lasttime: "2014-08-13T08;13:33Z".
cif-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                       @timestamp: "2014-08-13T08:13:40Z",
df-2014 08 13
                                                                                                                                         everyone 2014-08-13
                                                                                                            spamhaus.org
                       tlp: "green",
longitude: 37.6156,
cif-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                       timezone: "Europe/Moscow",
cif-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
cif-2014.08.13
                       observable: "194.1.184.0/24".
                                                                                                            spamhaus.org CA
                                                                                                                                         everyone 2014-08-13
                       countrycode: "RU"
cif-2014.08.13
                                                                                                            spamhaus.org CA
                                                                                                                                         everyone 2014-08-13
                       tags: [
cif-2014.08.13
                                                                                                            spamhaus.org FL
                                                                                                                                         everyone 2014-08-13
df-2014.08.13
                          "hijacked"
                                                                                                            spamhaus.org BC
                                                                                                                                         everyone 2014-08-13
cif-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
                       @version: 2,
df-2014.08.13
                                                                                                            spamhaus.org
                                                                                                                                         everyone 2014-08-13
cif-2014.08.13
                       reporttime: "2014-08-13T08:13:33Z",
                                                                                                            spamhaus.org NY
                                                                                                                                         everyone 2014-08-13
                       citycode: "Moscow",
cif-2014.08.13
                                                                                                            spamhaus.org MA
                                                                                                                                         everyone 2014-08-13
                       confidence: "95".
df-2014.08.13
                       altid:
                                                                                                            spamhaus.org BC
                                                                                                                                         everyone 2014-08-13
```

IOC representations

Multiple standards have been created to facilitate IOC exchanges.

- ► Madiant: OpenIOC
- Mitre: STIX (Structured Threat Information Expression), CyBOX (CyberObservable Expression)
- Mitre: CAPEC, TAXII
- ▶ IODEF (Incident Object Description Format)


Standards: OpenIOC

OpenIOC - Mandiant-backed effort for unform representation of IOC (now FireEye) http://www.openioc.org/

```
-<ioc id="6d2a1b03-b216-4cd8-9a9e-8827af6ebf93" last-modified="2011-10-28T19:28:20">
  <short description>Zeus</short description>
  <description>Finds Zeus variants, twexts, sdra64, ntos</description>
  <keywords/>
  <authored by>Mandiant</authored by>
  <authored_date>0001-01-01T00:00:00</authored_date>
  ks/>
 -<definition>
  -<Indicator operator="OR" id="9c8df971-32a8-4ede-8a3a-c5cb2c1439c6">
    -<Indicator operator="AND" id="0781258f-6960-4da5-97a0-ec35fb403cac">
      -<IndicatorItem id="50455b63-35bf-4efa-9f06-aeba2980f80a" condition="contains">
         <Context document="ProcessItem" search="ProcessItem/name" type="mir"/>
         <Content type="string">winlogon.exe</Content>
       </IndicatorItem>
      -<IndicatorItem id="b05d9b40-0528-461f-9721-e31d5651abdc" condition="contains">
         <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Type" type="mir"/>
         <Content type="string">File</Content>
       </IndicatorItem>
      -<Indicator operator="OR" id="67505775-6577-43b2-bccd-74603223180a">
        -<Indicatoritem id="c5ae706f-c032-4da7-8acd-4523f1dae9f6" condition="contains">
           <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir"/>
           <Content type="string">system32\sdra64.exe</Content>
         </IndicatorItem>
       -<IndicatorItem id="25ff12a7-665b-4e45-8b0f-6e5ca7b95801" condition="contains">
           <Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Name" type="mir"/>
           <Content type="string">system32\twain 32\user.ds</Content>
         </IndicatorItem>
        -<IndicatorItem id="fea11706-9ebe-469b-b30a-4047cfb7436b" condition="contains">
           Context document="ProcessItem" search="ProcessItem/HandleList/Handle/Type" type="mir"/>
```

Affilations: Academia Sinica, o0o.nu, chroot.org

RAW Data Preservation

Tools for Dynamic Detection

Moloch

tagger.so

- Moloch supports Yara (IOCs can be directly applied)
- Moloch allows you to develop your own plugins
- Moloch has awesome tagger plugin:

Living with compromise: Enterprise Network Survival in tough Russian Environment

```
# provides ability to import text files with IP and/or hostn
# into a sensor that would cause autotagging of all matching
plugins=tagger.so
taggerlpFiles=blacklist ,tag ,tag ,tag ...
```

 $taggerDomainFiles = domainbasedblack lists \;, \; tag \;,$

Extending Moloch

Moloch is easily extendable with your own plugins

https://github.com/fygrave/moloch_zmq - makes it easy to integrate other things with moloch via zmq queue pub/sub or push/pull model

moloch_zmq

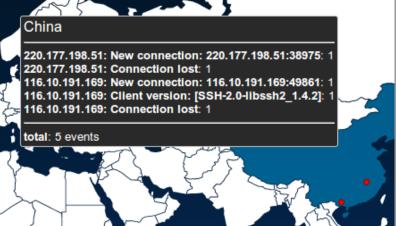
This ZMQ integration/data explort plugin for Moloch (http://github.com/aol/moloch/). The current implementation Acts as ZMQ PUB(lisher), which you need to connect to using your client(s) and perform additional real-time analysis of network data.

Presently only HTTP traffic (src ip, dst ip, ports, url and X-Forwarded-For headers are sent). The plugin could be further extended to hook into other protocols as well.

Only two 0MQ patterns are supported on the moment. Push/Pull and Pub/Sub.

Requirements:

0MQ 3.x or later.


Moloch ZMQ example

```
CEP-based analysis of network-traffic (using ESPER): https://github.com/fygrave/clj-esptool/
```

```
(esp :add "create context SegmentedBySrc partition by src from WebDataEvent")
(esp :add "context SegmentedBySrc select src,
rate(30) as rate, avg(rate(30)) as avgRate
from WebDataEvent.win:time(30) having rate(30)
< avg(rate(30)) * 0.75 output snapshot every 60 sec")
(future-call start-counting)</pre>
```

Fake targets

Honeypots are very useful when dealing with unknown threats or when dealing with environments with limited capabilities (VPN, BYOD, ..)

Honeypot data sharing

HPFeeds could be used to share honeypot data feeds in controlled manner via your own broker.

```
import pygeoip
import hpfeeds
import json
HOST='broker'
PORT = 20000
CHANNELS= ['geoloc.events']
IDENT='ident'
SECRET='secret'
gi = pygeoip.GeoIP('GeoLiteCity.dat')
hpc = hpfeeds.new(HOST, PORT, IDENT, SECRET)
msg = {'latitude':gi.record by addr(ip)['latitude'],
       'longitude':gi.record by addr(ip)['longitude'],
hpc.publish(CHANNELS, json.dumps(msg))
```

Last not least :)

Incident response: your availability is impacted by your investigation capabilities.

Incident Response: some details

- Ways to determine scope (impact)
- Ways to minimize scope (impact)
- Response to the threats with known scope (impact)

- Response to the threats with unknown scope (impact)
- Keep historical record of the process.

Questions

Q&A

our slides: http://www.slideshare.net/burguzbozo/